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General conditions are given for the continued complete absence of kinematically space-group for- 
bidden refiexions when the scattering is dynamic. It is shown that reflexions which are forbidden be- 
cause of glide planes or twofold screw axes will remain forbidden under dynamic conditions if suitable 
restrictions are placed on the direction of the incident beam. These restrictions can be represented by 
a cross, one arm of which corresponds to the exact Bragg condition, the other arm being normal to 
the first and to the screw axis or glide direction. When only zero-layer interactions are taken into 
account the locus of zero intensity includes both arms. When higher-layer interactions are included 
the locus of zero intensity will be one or other arm of the cross depending on whether the incident 
beam is perpendicular to a screw axis or parallel to a glide plane. The case in which the incident beam 
is perpendicular to a glide plane, though trivial for zero-layer interactions, leads to a condition for 
zero intensity satisfied only at the intersection of the arms of the cross when higher layer interactions 
are included. 

1. Introduction 

Under conditions of dynamic scattering kinematically 
forbidden reflexions may be excited with appreciable 
intensity when the conditions of 'Umweganregung' 
are satisfied, i.e. when h=hx+h2 and the Bragg con- 
dition is sufficiently well satisfied for h and ha. Here h 
is the reciprocal lattice vector for the forbidden re- 
flexion and ha and h2 the reciprocal lattice vectors for 
allowed reflexions. Nevertheless it has been shown 
(Cowley & Moodie 1959) that certain reflexions will 
remain forbidden if suitable restrictions are placed on 
the angle of incidence. 

In a typical case it is estimated that the permissible 
angular deviation will be of the order of ten minutes 
of arc, so that the associated effects will not be readily 
detected in conventional diffraction experiments. Re- 
cent improvements in the technique of electron diffrac- 
tion (Goodman & Lehmpfuhl, 1965) permit observation 
over a considerable range of angles with a resolution 
of the order of one minute of arc, and in consequence 
detailed measurements on the extinctions in CdS are 
now available. Precise selected area diffraction experi- 
ments have permitted qualitative observations to be 
made on hexagonal cobalt (Fujime, Watanabe & 
Ogawa, 1964). It is the purpose of this paper to lay 
down general conditions for the continued, complete 
absence of kinematically space-group forbidden re- 
flexions when the scattering is dynamic. 

In a dynamic treatment of electron diffraction it is 
usually sufficient to consider only those re flexions ly- 
ing within a section of reciprocal space which passes 
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through the origin. For simplicity this approximate 
case will be treated in some detail in § 2 and it will be 
shown in § 3 that the argument can be extended to in- 
clude all interactions. 

2. Extinction conditions for the planar groups 

The symmetry elements responsible for kinematic ab- 
sences in non-centred unit-cells are screw axes and 
glide planes. To the approximation of this section only 
the planar group of the appropriate projection need be 
considered. The only element in the planar group which 
can lead to absences is the glide-rettexion, correspond- 
ing to a twofold screw axis or a glide plane in the space 
group. From the point of view of two-dimensional sym- 
metry the remaining absences due to three-, four- and 
six-fold screw axes can be regarded as accidental and 
the corresponding reflexions will not vanish, as was 
pointed out by Cowley, Moodie, Miyake, Tagaki & 
Fujimoto (1961) for the particular case of a fourfold 
screw axis. 

We shall assume with no loss in generality that the 
projection has a symmetry pg. The angular conditions 
can be studied with the use of a general expression for 
dynamic scattering given by e.g. Cowley & Moodie 
(1957), Fujiwara (1959), Fujimoto (1959), Niehrs (1959). 
This expression can always be written as a series, the 
general term of which, for a reflexion h, takes the form 
(see e.g. Cowley & Moodie, 1961). 

F(h~) F(h2) -- - F(hn) Z (~, ~I, --- ~'n-1), (I) 

where ~r is the excitation error of the reflection Z h: 
n j = l  

and h =  2211/. Terms of this type may be represented 
j = l  
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graphically by means of a multiple scattering diagram. 
This is illustrated in Fig. l(a) for the case n=  3; where 
the lines labelled hi represent the structure factors F(hj) 
and excitation errors are associated with vertices. 

KinematicaUy forbidden reflexions will remain at 
zero intensity under dynamic conditions when terms 
of the above type can be arranged in pairs with pro- 
ducts of F 's  equal in magnitude and opposite in sign 
while the corresponding Z functions remain equal. 
Pairs satisfying the first of these two conditions result 
when the diagrams are reflected either over the line 
through the reciprocal lattice vector of the forbidden 
reflexion (line m in Fig. l(a)) or over a line bisecting 
the reciprocal lattice vector [line m' in Fig. l(a)]. 

In order to prove this, introduce the indices (h, k) 
of the h's so that the reflexions (0, k), k = 2 n +  1 are 
forbidden kinematically; that is, the glide line is paral- 
lel to the k axis. The reflexion of the diagram over m 
results in a change of sign in h in all the hj's. In re- 
flection over m' the sequence of the F 's  is also reversed. 
From the general properties of the planar group pg, 

F(h, k) = F(h, k) k= 2n 
F(h, k)=  -F(h,  k) k = 2 n +  1. 

For a kinematicaUy forbidden reflexion k is odd and 
hence equation (1) must contain an odd number of 
F(h, k)'s with k odd. Thus for the products represented 
by Fig. l(a), (b), (c), 

l(a) 
F(h,, k,)F(h2, k2) - - -  F(hn, kn)= 

~(b) 
- F ( h l ,  kl)F(h2, k2) - - -  F(hn, kn)= 

1(¢) 
-F([~n, kn)F(hn-1, kn-1) - - -  F(hl, k) . 

Since the excitation errors are related to the vertices 
of the diagrams they will be unchanged on reflexion 
over m when the incident beam lies in the plane through 

/7? 
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(a) (b) (c) 

Fig. 1. Multiple scattering diagrams for third order processes 
associated with the kinematically forbidden reflexion mar- 
ked X. (a) Typical third order diagram. (b) Diagram gene- 
rated by reflexion over m. (e) Diagram generated by reflexion 
over m'. 

:Bragg position B 

Fig. 2. Two-dimensional representation of the direction 
of the incident beam. 

k and the axis of projection. On reflexion over m' the 
excitation errors will remain unchanged when the in- 
cident beam originates exactly above the line m', that 
is, when the Bragg condition for the forbidden re- 
flexion is exactly satisfied. 

If the direction of the incident beam is represented 
two-dimensionally the region of complete absence of 
the forbidden reflexion will therefore become cross- 
shaped, as shown in Fig. 2, with one arm of the cross 
along the line corresponding to the exact Bragg con- 
dition and the other arm normal to the first and 
through the axis of projection. 

These results agree in detail with the observations 
made by Goodman & Lehmpfuhl (1964) on CdS. 

In addition to the general conditions limiting re- 
flexions considered above, additional reflexions may be 
forbidden kinematically when the atoms lie on special 
positions. These positions are not, however, described 
by the symmetry of the planar group and consequently 
terms will not cancel in the manner described above. 

3. Interactions involving higher layers 

In most cases of practical importance in electron dif- 
fraction dynamic interactions involving higher layers 
can be safely neglected. It is conceivable, however, that 
such interactions may become appreciable when the 
direction of the incident beam coincides with a long 
axis. For the sake of completeness we shall, in this 
section, extend our treatment to the general case. It is, 
of course, this case which corresponds to the calcula- 
tion of crystal wave-functions with the full three-di- 
mensional symmetry, a problem of some interest in 
solid state physics. 

Three essentially different situations arise. Two de- 
rive from the inclusion of higher layer interactions in 
the case considered in § 1. These are (i) a projection 
along an axis in a glide plane, and (ii) a projection con- 
taining a twofold screw axis. In addition it is necessary 
to consider (iii) higher layers of a projection with a 
reduced or centred unit-cell. Here the projection con- 
stitutes a trivial case, but possibilities for 'Umweg- 
anregung' arise when interactions with higher layers 
are included. 

These three cases can be discussed in terms of the 
diagrams of Fig. 1 (a), (b), (c), which are now no longer 
restricted to the plane of the zero layer. Fig. l(b) 
is now obtained from (a) by a reflexion over a plane 
m through the axis of projection and similarly (c) re- 
sults from a reflexion over a plane m' parallel to the 
axis of projection plus reversal of direction. Fig. l(c) 
may be derived from (b) by a rotation of 180 ° round 
the line of intersection of the planes m and m' plus 
rever sal of direction. 

Since the corners of the diagrams will remain at the 
same height above the zero layer after the reflexions, 
equality of the Z functions still obtains under the con- 
ditions laid down in § 2. Hence the terms given by 
equation (1) will cancel in pairs under the geometrical 
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conditions represented by the two arms of the cross of 
Fig. 2 provided the products of the structure factors 
cancel. It may be added that terms represented by the 
diagrams of Figs. l(b) and (c) have equal Z functions 
for a direction of the incident beam given by the centre 
of the cross. 

It is superfluous to demand that the reflexions over 
m or m' should be allowed by the point symmetry of 
the lattice as this will be implicit in the conditions ne- 
cessary for the cancellation of the products of the 
structure factors. We now set out to define those con- 
ditions. 

We write the arguments of the structure factors 

l(a) l(b) l(c) 

(hi, k:, l:) (hi, k:, lj) (h:,/~j, l:), 
where h lies along the axis of projection and l =  2n + 1 
are the forbidden reflexions under consideration. For- 
mulae relating to the structure factors for the above 
arguments in the case of a glide plane and a twofold 
screw axis are those relating to the space groups Pc 
and P21 respectively, namely: 

F(h, k , / ) = ( - 1 )  ~ F(h, :c, /); glide plane (010), glide c/2, 
F(h, k, / )  = ( - 1 )  l F(h, fc, l); screw axis along c, 
F(h, k, l ) = ( - 1 )  Z F(h, k , / ) ;  glide plane (100), glide c/2. 

By using arguments exactly analogous to those of 
§ 2 we find that the terms represented by Fig. l(a) and 
(c) will cancel for a space group with a twofold screw 
axis when the geometrical conditions are such as to 
make their excitation errors, and hence their Z func- 
tions, equal; that is, for those conditions represented 
by the arm labelled B in Fig. 2. 

The terms represented by Fig. l(a) and (b) will 
cancel for a space group with a glide plane in the 
given orientation under the geometrical conditions re- 
presented by the arm A of the cross in Fig. 2. 

Table 1. Conditions under which kinematically space- 
group forbidden reflexions remain at zero intensity when 

dynamic interactions are included 
A Incident beam in the plane defined by the reciprocal lattice 

vector of the forbidden reflexion and the axis of projection. 
B Bragg condition satisfied by forbidden reflexion. 

Axis of incident beam 
relative to symmetry 

element 
Perpendicular to screw axis 
Parallel to glide plane 
Perpendicular to glide plane always (trivial) 

Conditions for absence 
^ m 

Including 
Only zero-layer higher layer 

interactions interactions 
A o r B  B 
A orB A 

A and B 

Finally, the terms represented by the Fig. l(b) and 
(c) cancel for a space group with a glide plane normal 
to the axis of projection under the conditions repre- 
sented by the centre of the cross in Fig. 2, i.e. when 
the incident beam satisfies the Bragg condition of the 
forbidden reflexion and lies in a plane defined by the 
glide direction and the normal to the glide plane. These 
results are summarized in Table 1. 

The argument relating to the situation in which the 
direction of the incident beam lies along an axis in the 
glide plane is applicable to any reflexion (h, 0, l), 
l=  2 n + 1, forbidden by the glide plane, and hence also 
to non-axial glide. 

It may be mentioned that the geometrical conditions 
imposed on the incident beam, which are summarized 
in Fig. 2, leave one coordinate in the wave-vector space 
undetermined, since the results are applicable over a 
range of wavelengths. This contrasts with the calcula- 
tion of electron wave-functions in crystals, where spe- 
cial points in k space are often studied. Under those 
conditions 'forbidden reflexions', or vanishing energy 
gaps also result from three-, four- and six-fold axes. 

Kinematically forbidden reflexions may also appear 
as a result of plural scattering in mosaic crystals (e.g., 
Cowley, Rees & Spink, 1951). The arguments given 
here then do not apply and, in fact it must be expected 
that the regions of dynamical absence will vanish for 
a mosaic crystal. 

One of us (J.G.) is indebted to Melbourne University 
for a research fellowship. 
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